Chu trình CNO lạnh Chu trình CNO

Dưới điều kiện thường trong ngôi sao, quá trình đốt hydrogen có xúc tác trong chu trình CNO bị giới hạn bởi các quá trình bắt proton. Đặc biệt, thời gian cho phân rã beta của hạt nhân phóng xạ được sinh ra là nhanh hơn thời gian cho nhiệt hạch. Do thời gian nhiệt hạch dài nên chu trình CNO chuyển hydrogen về helium khá chậm, cho phép chúng tạo ra năng lượng trong sao ở trạng thái cân bằng tĩnh trong nhiều năm.

Chu trình CNO loại I

Chu trình CNO loại I ban đầu được gọi là chu trình carbon–nitrogen (chu trình CN), và cũng được gọi là chu trình Bethe–Weizsäcker để vinh danh công trình của Carl von Weizsäcker năm 1937-38[4][5] and Hans Bethe. Các bài báo của Bethe năm 1939 về chu trình CN[6][7] đã được vẽ lên 3 trang giấy cùng với Robert BacherMilton Stanley Livingston[8][9][10] và nó còn được biết đến một cách trang trọng là "Kinh thánh của Bethe." Nó đã được xem như chủ đề nóng bỏng trong vật lý hạt nhân trong nhiều năm và là một yếu tố giúp ông nhận Giải Nobel Vật lý năm 1967.[11] Các tính toán ban đầu của Bethe đã gợi ra chu trình CN là nguồn năng lượng chính của Mặt Trời.[6][7] Kết luận này xuất phát từ sự tin tưởng bị nhầm lẫn rằng: độ phổ biến của nitrogen trong Mặt Trời xấp xỉ 10%, nhưng thực tế nó nhỏ hơn 0.5 phần trăm.[12] Chu trình CN, được đặt tên do nó không chứa đồng vị bền oxygen trong quá trình biến đổi: 12C → 13N → 13C → 14N → 15O → 15N → 12C.[12] Chu trình này được hiểu là phần đầu tiên trong một chu trình lớn hơn là chu trình CNO, và nhiều phản ứng chính trong phần này của chu trình (CNO loại I) là:[12]

12C 1H → 13N γ   1.95 MeV
13N   → 13C e+
 
ν
e
 
1.20 MeV(thời gian bán rã là 9.965 phút[13])
13C 1H → 14N γ   7.54 MeV
14N 1H → 15O γ   7.35 MeV
15O   → 15N e+
 
ν
1.73 MeV(thời gian bán rã là 122.24 giây[13])
15N 1H → 12C 4He   4.96 MeV

trong đó hạt nhân carbon-12 được sử dụng trong phản ứng đầu tiên được tạo lại trong phản ứng cuối. Sau đó hai positron được phát ra hủy với hai electron ở môi trường xung quanh để tạo ra năng lượng 2.04 MeV, năng lượng toàn phần được giải phóng trong một chu trình là 26.73 MeV; trong một số tài liệu, các tác giả mắc lỗi khi xét năng lượng hủy positron là giá trị Q trong phân rã beta và sau đó bỏ qua năng lượng được giải phóng bởi sự hủy, dẫn đến sự rắc rối. Tất cả các giá trị được tính trong hệ quy chiếu Khối lượng Nguyên tử 2003.[14]

Phản ứng giới hạn (chậm nhất) trong chu trình CNO loại I là quá trình bắt proton bởi 14N. Năm 2006 nó được đo bằng thực nghiệm ở năng lượng sao, tính toán tuổi của các cụm sao cầu khoảng 1 tỉ năm.[15]

Các neutrino phát ra trong phân rã beta sẽ có phổ năng lượng mặc dù động lượng được bảo toàn, động lượng có thể được chia theo cách phụ thuộc vào positron và neutrino, với một trong hai phát ra ở trạng thái nghỉ và hạt còn lại mang hết năng lượng đi, hoặc miễn là toàn bộ năng lượng từ giá trị Q được sử dụng. Động lượng toàn phần được nhận bởi electron và neutrino không đủ lớn do hiệu ứng giật lùi đàng kể của hạt nhân con có khối lượng nặng hơn và do đó, đóng góp của động năng các hạt sản phẩm, với các giá trị cho trước ở đây, có thể được bỏ qua. Do vậy neutrino phát ra suốt quá trình phân rã nitrogen-13 có thể có năng lượng từ không lên tới 1.20 MeV, và neutrino phát ra suốt phân rã oxygen-15 có thể có năng lượng từ không lên tới 1.73 MeV. Lấy trung bình, khoảng 1.7 MeV năng lượng toàn phần được lấy đi bởi các neutrino cho mỗi vòng của chu trình, bỏ lại khoảng 25 MeV cho việc tạo ra sự phát quang.[16]

Chu trình CNO loại II

Trong một nhánh phụ của phản ứng trên, xảy ra trong lõi Mặt Trời khoảng thời gian 0.04%, phản ứng cuối cùng liên quan đến 15N cho thấy ở trên không sản xuất carbon-12 và một hạt alpha nhưng thay vào đó sẽ sản xuất ra oxygen-16 và một photon và tiếp tục 15N→16O→17F→17O→14N→15O→15N:

15N 1H → 16O γ   12.13 MeV
16O 1H → 17F γ   0.60 MeV
17F   → 17O e+
 
ν
2.76 MeV(thời gian bán rã là 64.49 giây)
17O 1H → 14N 4He   1.19 MeV
14N 1H → 15O γ   7.35 MeV
15O   → 15N e+
 
ν
2.75 MeV(thời gian bán rã là 122.24 giây)

Giống như carbon, nitrogen và oxygen trong nhánh chính, fluorine được tạo ra trong nhánh phụ hiếm khi là sản phẩm trung gian và ở trạng thái ổn định, không tích trữ trong ngôi sao.

Chu trình CNO loại III

Nhánh phụ này chỉ đóng góp trong các sao nặng. Các phản ứng được bắt đầu khi một trong các phản ứng của CNO loại II tạo ra fluorine-18 và gamma thay vì tạo nitrogen-14 và alpha, và tiếp tục 17O→18F→18O→15N→16O→17F→17O:

17O 1H → 18F γ   5.61 MeV
18F   → 18O e+
 
ν
1.656 MeV(thời gian bán rã là 109.771 phút)
18O 1H → 15N 4He   3.98 MeV
15N 1H → 16O γ   12.13 MeV
16O 1H → 17F γ   0.60 MeV
17F   → 17O e+
 
ν
2.76 MeV(thời gian bán rã là 64.49 giây)

Chu trình CNO loại IV

A proton reacts with a nucleus causing release of an alpha particle.

Giống như CNO loại III, nhánh này cũng chỉ đóng góp trpng các sao nặng. Các phản ứng được bắt đầu khi một trong các phản ứng trong CNO loại III tạo ra fluorine-19 và gamma thay vì nitrogen-15 và alpha, và tiếp tục 18O→19F→16O→17F→17O→18F→18O:

18O 1H → 19F γ   7.994 MeV
19F 1H → 16O 4He   8.114 MeV
16O 1H → 17F γ   0.60 MeV
17F   → 17O e+
 
ν
2.76 MeV(thời gian bán rã là 64.49 giây)
17O 1H → 18F γ   5.61 MeV
18F   → 18O e+
 
ν
1.656 MeV(thời gian bán rã là 109.771 phút)